

Spatial and modular organisation of brain networks prevents large-scale activation

Marcus Kaiser

School of Computing Science / Institute of Neuroscience Newcastle University United Kingdom

http://www.biological-networks.org

Network Science

Rapidly expanding field: Watts & Strogatz, *Nature* (June 1998) cited 2,255 times Barabasi & Albert, *Science* (October 1999) cited 2,122 times

Modelling of SARS spreading over the airline network (Hufnagel, *PNAS*, 2004)

Identity and Search in Social Networks (Watts et al., *Science*, 2002)

The Large-Scale Organization of Metabolic Networks. (Jeong et al., *Nature*, 2000)

Types of neural/cortical connectivity

- Structural / Anatomical (connection): two regions are connected by a fibre tract
- Functional (correlation): two regions are active at the some time
- Effective (causation): region A causes activity in region B

Sporns, Chialvo, Kaiser, Hilgetag. Trends in Cognitive Sciences, 2004

Cortical networks

Nodes: cortical areas

Edges: fiber tracts between areas

Human cortical areas (after Brodmann, 1909)

Cortical networks

Visual pathways

Visual system

Structure and Function in Neural Systems

- Multiple clusters
- Small-world architecture
- Scale-free organisation
- Spatial arrangement
- Development of spatial networks
 Hierarchy and critical activation

Cat cortical network

Hilgetag & Kaiser (2004) Neuroinformatics 2: 353

Multiple clusters/communities

Hilgetag et al. (2000) Phil Trans R Soc 355: 91

Reconstructing connectivity

Macaque visual cortex (31 nodes)

Green: correct prediction

Red: wrong prediction

Yellow: prediction of untested connectivity

Costa LdF, Kaiser M, Hilgetag CC (2007) BMC Systems Biology 1:16

Small-world architecture

Small-world features

Small-world

Average clustering coefficient

path length ~2 → One degree of separation

Scale-free organization

(Barabasi & Albert, Science, 1999)

(Liljeros, Nature, 2001)

Is the brain similar to scale-free networks?

Sequential node removal

Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192

Spatial arrangement

Reducing neural wiring costs

- Minimizing total wire length reduces metabolic costs for connection establishment and signal propagation
- Every alternative arrangement of network nodes will lead to a higher total wiring length (Component Placement Optimization, CPO) (Cherniak, *J. Neurosci.*, 1994)

Previous results supporting CPO

 Macaque: layout of cortical prefrontal areas (Klyachko & Stevens, PNAS, 2003)

C. elegans: layout of ganglia (Cherniak, J. Neurosci., 1994)

Rhesus monkey cortical network

Global level (277 neurons with 2105 connections)

(White et al., 1986; Choe et al., 2004)

15 µm

Wiring length distribution

Reduced wiring length for alternative placements

Kaiser & Hilgetag (2006) PLoS Computational Biology, 7:e95

Fewer long-distance projections for optimized placement

Original network

same number of connections preference for short-distance

Why are there long-distance connections?

Benefits of fewer processing steps

- Synchrony of near and distant regions

- Reduced transmission delays

- Less (cross-modal) interference

- Higher reliability of transmission

Altered Connectivity in Alzheimer patients

EEG synchronization Network

Stam et al. (2007) Cerebral Cortex, 17:92

Path length and task performance

Mini Mental State Examination (attention, memory, language)

Diamonds: Alzheimer patients

Empty squares: Control

Development

Real-world networks extend in space!

References

Kaiser & Hilgetag (2004). *Physical Review E* 69:036103 Kaiser & Hilgetag (2007). *Neurocomputing*, 70:1829-1832 Nisbach & Kaiser (2007). *European Physical Journal B*, 58:185–191

Topological and spatial organization

- (1) Preference for short-distance connections
- (2) Existence of long-distance connections
- (3) Small-world properties
- (4) Spatial and topological clusters

Spatial growth

— Time windows

Distance dependence

Global connectivity (between areas)

Kaiser & Hilgetag, 2004

Local connectivity

Braitenberg & Schuez, 1998 Hellwig, 2000

Rat visual cortex (layers 2, 3)

Spatial growth

Edge formation probability depends on spatial distance *d* between nodes *u* and *v*

$$P(u, v) = \beta e^{-\alpha d(u, v)}$$

Kaiser & Hilgetag, Physical Review E, 2004

Resulting network topology

Spatial growth and time windows

Spatial component:

 $\mathsf{P}_{\mathsf{dist}}(\mathsf{u},\mathsf{v}) = \mathsf{c}^* \mathsf{e}^{-\mathsf{a} d(u,v)}$

Time-window dependance: $P(u,v) = P_{temp}(u) * P_{temp}(v) * P_{dist}(u,v)$

Development of Clusters

Kaiser & Hilgetag (2007). Neurocomputing, 70:1829-1832

Robustness of small-world properties

Nisbach & Kaiser (2007). European Physical Journal B, 58:185–191

Is this model implemented in the brain?

Experimentally testable predictions:

- (1) A small overlap of the time windows of two regions should result in fewer fibre tracts between those regions.
- (2) Regions with wider time windows should (a) have a larger number of connections and (b) be part of a larger cluster.
- (3) Older regions should get more connections than newer regions.

Hierarchy and critical activation

One degree of separation

Critical range of cortical function

High level of activation

Epileptic seizure

100] Cere	bral deati	h		
0	0	1	2	3 Time	[s] 4

Standard model: Balance between inhibition and excitation

Soltesz & Staley. Computational Neuroscience of Epilepsy. Academic Press, to appear in Nov.

Topological model: Hierarchical modular network

• clusters of sub-clusters of nodes

Spatial self-similarity

Cortical network

Box counting dimension: 1.5-1.7

Binzegger et al. (2005), Cerebral Cortex

Box counting dimension: 1.39-1.42

(Kaiser, unpublished)

Hierarchical cluster network model

- 1,000 nodes; 12,000 bidirectional connections ullet
- activation threshold: >6 presynaptic neurons, stochastic • deactivation, p=0.3

Comparison networks

hierarchical cluster

random

small-world

Example activation behaviour

- 30 runs
- 100 (10%) randomly activated initial nodes

small-world

hierarchical cluster

Kaiser, Goerner, Hilgetag (2007) New Journal of Physics, 9:110

Robustness for spreading parameters

k: activation thresholdv: deactivation probability

Robustness for node exhaustion

Dependence on inter-cluster connectivity

Sustained activity in one cluster

Sustained activity in three clusters for *reduced* intercluster connectivity

Do epilepsy patients have larger inter-cluster connections?

Outlook: Hierarchies and activity spreading

subsubcluster activation
→ spatially near nodes
→ rapid feedback
→ rapid oscillation

cluster activation

- \rightarrow spatially near and distant nodes
- \rightarrow slower feedback
- \rightarrow slower oscillation

Partial seizure

Xiang and Kaiser, unpublished

www.carmen.org.uk

EPSRC £4.5M e-science project started in Oct 2006

wellcome^{trust} 4-year PhD Programme: 'Systems Neuroscience: From Networks to Behaviour' starting October 2008

Newcastle :

Prof. Colin Ingram, Prof. Paul Watson. Dr Stuart Baker. Dr Marcus Kaiser. Dr Phil Lord. Dr Evelyne Sernagor, Dr Tom Smulders. Prof. Miles Whittington York : Prof Jim Austin Stirling : Prof Leslie Smith St Andrews : Dr Anne Smith **Cambridge**: Dr Stephen Eglen Leicester : Dr Rodrigo Quian Quiroga Manchester: Dr Stefano Panzeri Sheffield : Dr Kevin Gurney, Dr Paul Overton **Plymouth :** Prof. Roman Borisyuk Warwick: Prof. Jianfeng Feng **Imperial College : Dr Simon Schultz**

Summary

- Cortical networks show properties of small-world and scale-free networks and have a modular organization (clusters)
- Neural systems are optimized for fast processing rather than for saving energy

- Spatial growth with time windows generates modular small-world networks
- Hierarchical modules enable robust sustained activity without inhibition or external inputs

Collaborators

Jacobs University Bremen Claus Hilgetag

Newcastle University

Alex Thiele Miles Whittington Mark Cunningham Evelyne Sernagor Indiana University Olaf Sporns

São Paulo University Luciano da Fontoura Costa

Cambridge University Stephen Eglen

Team

Jennifer Simonotto PostDoc

Jose Marcelino PhD student

Supported by e-Therapeutics, EPSRC, and Royal Society.

More information at http://www.biological-networks.org/